Mechanised Computability Theory

نویسنده

  • Michael Norrish
چکیده

This paper presents a mechanisation of some basic computability theory. The mechanisation uses two models: the recursive functions and the λcalculus, and shows that they have equivalent computational power. Results proved include the Recursion Theorem, an instance of the s-m-n theorem, the existence of a universal machine, Rice’s Theorem, and closure facts about the recursive and recursively enumerable sets. The mechanisation was performed in the HOL4 system and is available online.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mechanised Theory Engineering in Isabelle

This is an introduction to mechanised theory engineering in Isabelle, an LCF-style interactive theorem prover. We introduce an embedding of Hoare & He’s Unifying Theories of Programming (UTP) in Isabelle (named Isabelle/UTP) and show how to mechanise two key theories: relations and designs. These theories are su cient to give an account of the partial and total correctness of nondeterministic s...

متن کامل

A String of Pearls: Proofs of Fermat's Little Theorem

We discuss mechanised proofs of Fermat’s Little Theorem in a variety of styles, focusing in particular on an elegant combinatorial “necklace” proof that has not been mechanised previously. What is elegant in prose turns out to be long-winded mechanically, and so we examine the effect of explicitly appealing to group theory. This has pleasant consequences both for the necklace proof, and also fo...

متن کامل

Introduction to Computability Theory

These are notes for a short introductory course on Computability Theory (or recursive function theory). The basic notion of computability is defined in terms of a simple imperative programming language.

متن کامل

Computability Theory

formalisms of computability

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011